
Project Layout
I’m a polyglot programmer. I work in a variety of languages but mostly in
C#, Typescript, and Rust. Every few years, I try a new language to see if I
can pick up new ideas or if one “fits” my current mental state better. This is
also why I’ve done a lot dozens of other languages; I would say I know over
thirty languages but I’m only a “master” in a handful.

I also flit from project to project. I have my writ‐
ing and games. I have little one-off programs and ones that I hope will be‐
come a major thing. But, like everything else in my life, I’m “gloriously unfo‐
cused” on my tasks which means I have to minimize the speed that I get
into a project before the muse escapes me.

Tools Selection

One of the earliest approaches I had to try getting a proper environ‐
ment at the per-project level was asdf. It worked out fairly well for a few
years, but then I noticed that my various novels and stories were getting
fragile. There were limitations that asdf couldn’t handle easily which meant I
needed something more reliable. That led me into Nix which is my current
setup because entering the directory sets up that project’s settings while still
giving me the reproducibility I need for my novels.

1

file:///tags/c-sharp/
file:///tags/typescript/
file:///tags/rust/
file:///categories/writing/
file:///categories/writing/
file:///tags/asdf
file:///tags/nix/

This means that most of my projects now have a ./flake.nix and a ./
flake.lock in the root level.

Building, Releasing, and Actions

Because I’ve fallen in love with Semantic Releases and Conventional
Commits, a lot of my processes are built around those. In earlier projects,
that usually meant that almost every project also included Node in some
form so I could use semantic-release. That also meant I could use
pack­age.json to handle versioning.

Though, recent thoughts have suggested that I need to break that “one
tool fits all” approach. Mostly it came while working on Nitride and this web‐
site. I found myself trying to have “one build system” to create everything
related to the site, including handling Javascript and CSS/SASS. Those are
two very complicated projects in C#, so I realize it made sense that instead
of creating a Nitride task to call webpack, I really should just call
web­pack directly. In other words, the Unix philosophy.

This is where being a polyglot and using different tools comes into play.
I have a website that does C#, Typescript, and SASS at the same time.
Which one is the “root”, which command drives everything? What about a
Rust project? Or something else?

Shell Scripts

That has kind of led me to my current approach. Instead of always
packaging Node in my projects, I really should have a standard location to
handle the various actions/targets that apply to any project. Right now, that
seems to be shell scripts.

With shell scripts, I just have to know that ./scripts/build.sh will do what‐
ever is needed to build the target. Same with ./scripts/test.sh and ./scripts/
re­lease.sh. A Rust project may call Cargo, a .NET project will call
dot­net, and polyglot will call any and all needed to build it.

This will give me room to experiment. If I decide I want to play with
Cake for my .NET projects, then it still works out because it is just a consis‐
tent place. If I want to use Lefthook instead of Husky, I can.

I also went with .sh suffixes on the files because while I mostly code in
Linux, I also want to support Powershell and Windows. That way, it is also
clear that build.sh and build.ps1 probably result in the same end-result, but
specific for that language. (I know Powershell runs on Linux too.)

Obviously, some documentation would be required, but that could be a
README.md file in that directory. That will look nice in GitLab and give docu‐
mentation.

D. Moonfire

2

file:///tags/semantic-release/
file:///tags/conventional-commits/
file:///tags/conventional-commits/
https://github.com/semantic-release/semantic-release
file:///tags/nitride/
file:///tags/webpack/
https://en.wikipedia.org/wiki/Unix_philosophy
file:///tags/cake/
file:///tags/lefthook/
file:///tags/husky/
file:///tags/linux/
file:///tags/powershell/
file:///tags/windows/
file:///tags/gitlab/

Paths

Fortunately, I use direnv and nix-direnv frequently in my development.
This loads the flake.nix file as soon as I enter the directory and sets up the
tools I need. It also gives me a chance to modify the PATH variable but only
for that directory which means I can add the ./scripts folder into the path
and have it available anywhere inside the project.

ex­port PATH=$PWD/scripts:$PATH
use flake || use nix

When working with packaging systems such as Node that also include
scripts, I also add those into the path. In both cases, $PWD is always the di‐
rectory with the .en­vrc file, even if I change directly into somewhere
deeper into the proejct tree; using $PWD/scripts means that the build.sh
command is available anywhere.

ex­port PATH=$PWD/scripts:$PWD/node-mod­ules/.bin:$PATH
use flake || use nix

Boilerplates

Over the half year or so that I’ve been using this, I found that I was in‐
troducing a few new patterns into my scripts. Mostly these were to support
CI/CD environments but also because I like feedback that scripts are doing
something.

The most notable aspects were to almost always move into the root di‐
rectory of the project.

#! /usr/bin/env bash
cd $(dirname $(dirname $0))

In the above case, $0 is the name of the script. The first dirname gets
me into the ./scripts folder, the second gets me into the root. That means
that even if I call this script from deep inside the project, the paths are al‐
ways relative to the project root.

The other is to set up logging so I have something to see what is going
on. This is useful for the CI process, but also just so I know something is
working properly. I ended up using a consistent start to the scripts to help
me identify where the build process was.

log() { echo "01F
9EA $(base­name $0): $@"; }

log "run­ning tests/gre­go­ri­an-tests.scm"
some test­ing code

Exit Planning

3

https://direnv.net/
https://github.com/nix-community/nix-direnv

When run, it looks like this:

$ test.sh
01F
9EA test.sh: run­ning tests/gre­go­ri­an-tests.scm
......................................
--
Ran 38 tests in 0.001s

OK
$

Each script usually has their only Unicode character, which also gives
the logs a nice colorful appearance and really makes it easier to see where
things are going. I ended up using a Bash function for this because it sim‐
plifed the calls into a simple log mes­sage and made it easier to func‐
tion.

Sadly, Bash doesn’t have a good packaging story, so I just copy/paste
this into the top of every script along with the #! /usr/bin/env bash shebang.
Overall, it seems to work and I’ve been pretty happy with it since.

D. Moonfire

4

	Pro�ject Lay�out
	Tools Se�lec�tion
	Build�ing, Re�leas�ing, and Ac�tions
	Shell Scripts
	Paths
	Boil�er�plates

